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1. Introduction   
Many widely studied stochastic rational expectations models can be expressed as:  
                                                                                                                                

              1 11 11 11 1
( , , ) 0, 0 (1)t t t tn nn m

E G tω ω εξ+ +
× ×× × ×

=⋅ ≥
                       

where tE  denotes the mathematical expectation conditional upon complete information about 
periods t and earlier; 2: n m nG R R+ →  is a function, and tω  is an 1n×  vector of variables 
known at date t; 0ξ ≥  is a scalar, and 1 1, 1 2, 1 , 1( ; ;...; )t t t m tε ε ε ε+ + + +=  is an 1m×  vector of date 
t+1 exogenous independent random variables. The following discussion assumes that tε  has 
bounded support and these moments: , 1 0t i tE ε + = , 2

, 1( ) 1t i tE ε + = , 3
, 1( ) 0t i tE ε + = , 4

, 1( ) 3.t i tE ε + =   1  
 The solution of (1) is  a "policy function"  
                                                    1 1( , , )t t tfω ω ξε ξ+ += ,                                                            (2)   
that satisfies the condition                                     
                      1 1( , , ) 0( , ), , 0t t t t t tE G f ω ε ω ε ωξ ξ ξ ξ+ + = ∀ ∀ ≥ .                                     (3)  
 When G is linear, then the solution f  is likewise linear and can easily be computed 
using well-known algorithms (e.g., Hansen and Sargent (1980), Blanchard and Kahn (1980), 
Anderson and Moore (1985),  Klein (2000) and Sims (2002)). However, most economic 
models (G) are non-linear. A widely used approach (e.g., King, Plosser and Rebelo, 1988) 
consists in taking a linear approximation of non-linear models, around a deterministic steady 
state. A drawback of that approach is that it does not allow to capture the effect of the 
volatility of exogenous shocks on the mean values of endogenous variables, as the linearized 
solution exhibits certainty-equivalence; that method is thus not suited for computing welfare 
or for the analysis of risk premia on financial assets.   
 Judd and Guu (1993), Judd and Gaspar (1996) and Judd (1998) propose a general 
approach for approximating the policy functions of continuous time and discrete time models 
using Taylor expansions of order k>1, around a steady state. To date, applications of that 
approach to discrete time models have mainly focused on quadratic approximations, k=2. See, 
e.g., Sims (2000), Collard and Juillard (2001), Schmitt-Grohé and Uribe (2004), and 
Schaumburg (2002) who have produced (and made publicly available) computer programmes 
for k=2; several studies have used these programmes for the analysis of medium scale 
macroeconomic models (e.g.,  Kollmann (2002, 2003, 2004), Schmitt-Grohé and Uribe (2003) 
and Kim (2003)). Judd and Jin (2002), Jin (2003) and Juillard (2003) recently developed 
computer code for discrete time approximations of order k>2 (I learnt about these 
contributions after completing most of the work described here).   
 This paper presents an algorithm for computing approximations of order k=2, 3 and 4, 
using an approach that differs from that used by the papers that were just cited (see discussion 
in Sect. 2.3 below). The computational approach used here differs from that used by the 
papers cited above. MATLAB code that implements the present algorithm will be made 
available on my web page.    

                                                 
1 The first to fourth moments of , 1i tε +  correspond thus to those of a standard normal random variable. Note that 

3

, 1( ) 0t i tE ε + =  holds for any symmetric distribution. The algorithm can easily be adapted to allow for 
4

, 1( ) 3.t i tE ε + ≠   
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 It appears that approximations of order 2k ≥  may be markedly more accurate than 
linear approximations (k=1). A fourth order approximation may be noticeably more accurate 
than a second order approximation if  the variability of the exogenous shocks is high and/or 
the model exhibits strong curvature.   
 Section 2 describes the algorithm (and compares it to previous methods). Section 3 
applies it to selected models.   
 
2. The method 
I begin by discussing definitions/notation. Throughout this paper, the term "steady state" 
refers to the deterministic steady state, i.e. to a model solution in which 1 ,t tω ω ω+ = =  

1 0t m tε + = ∀ ,  with ( , , )0 0m nG ω ω = , where 0m  is a column vector of zeros ( m  elements).  
Steady state values are denoted by variables without time subscripts, and t tdz z z= −  is the 
deviation of a variable tz  from its steady state value. 
 nR  denotes a polynomial consisting of powers of order n  and higher of elements of  

0{ ; }d τ τ τω ξε ≥ .  
( )n
th  denotes an n-th order accurate approximation of variable th , in the following 

sense: ( )
1

n
t t nh h R +− = . Let  ( ) ( 1){ } s s

t t t
sh h h −= − , for 1s > . Thus, (2) (1) {2}

t t th h h= + , 
(3) (1) {2} {3}
t t t th h h h= + +   etc.  

If a  and b  are matrices, then ( )a b;  denotes  the matrix obtained by vertically 
concatenating a  and b (provided a  and b  have the same number of columns), while ( )a b,  
denotes horizontal concatenation.   
 Let k  be a column vector with N  elements. ( )nP k , for 2,3,...n =  denotes a column 
vector consisting of all n th−  order powers and cross-products of the elements of k . In the 
computer programs, these powers/cross-products are arranged in the following order: 

1 ( )P k k=  and  1 1 2 2 3 1 1( ) ( ( ); (( ; ;..; ));....; (( ; )); ( ) )s s s N N s N N N s NP k k P k k P k k k k P k k k P k+ − −=  for 
1s > , where ik  is the i th−  element of k .  

 
2.1. First-order approximations 
The algorithm for generating second (and higher) order approximations presented here takes 
as its starting point a first-order accurate (linear) model solution. As discussed above, several 
solution methods for linear(ized) rational expectations models are available in the literature. 
Any of these methods could be used to generate higher order accurate solutions. Here, I use 
Sims' (2002) algorithm (that can be implemented using Chris Sims' computer program gensys, 
available at ~. . /www princeton edu sims ).  This section briefly reviews Sims' (2002) approach. 
Following Sims (2002) note that (1) implies 
                                1 1 1( , , ) 0t t t tG ω ω εξ η+ + ++Π = ,  with 1 0t tEη + = ,                                        (2) 
where Π  is a matrix of size n p× , where p  equals the number of model equations that 
include date t expectations of date t+1 variables. tη  is  function of  1tε +  (that function is not 
known a priori).  

Sims (2002) shows that the solution of the model can be written as:  
                                          1 1 1 1( , ), ( )t t t t ty F y x M yξε+ + + += = ,                                                

  with ( ; )t t ty x Z ω= ,                                                               (3) 
where Z  is a non-singular n n×  matrix. ty  and tx  are column vectors with yn  and xn  
elements, respectively, with y xn n n= + ; F  and M  are functions.   
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Take a  first-order Taylor expansion of (2) around a steady state. This gives:  
                                       1 1 1 20 1 2t t t tG d G d G Rω ω ξε η+ + += + +Π + ,                                          (4) 
where 0, 1G G  and 2G  are matrices/vectors of size n n× , n n×  and 1n× ,  respectively. 
 Using (3), we can write (4) as:  
                            1 1 1 1 1 1 20 ( ; ) 1 ( ; ) 2t t t t t tK dy x K dy x G Rξε η+ + + + + += + + Π + ,                             (5) 
with 10 0K G Z −= , 11 1K G Z −= .  

Sims (2002) shows there exists an n n×  matrix T  with the following properties:  2 

                     
1

0
0 1

ynI H
T K

J

 
=  
 

 ,  
1 2

1
0 2
F H

T K
J

 
=  
 

  and  
0

yn pT ×

∗

 
Π =  

Π 
 ,                         (6) 

where ( ) ( ) ( ) ( ) ( ) ( )1 , 1 , 1 , 2 , 2 ,y x x x y y y x x x xn n n n n n n n n n n pH J F H J ∗× × × × × ×Π  are matrices 
(sizes shown in parentheses). Premultiplying (5) by T  thus gives a block-recursive system of 
equations:   

   1 1 1 21 1 2 2t t t t tdy H dx F dy H dx F Rξε+ + ++ = + + + ,                                 (7) 
                                          1 1 1 21 2 22t t t tJ dx J dx G Rξε η∗+ + += + +Π + ,                                     (8) 
where 2F  and 22G  are matrices with yn  and xn  rows respectively ( ( 2; 22) 2F G T G= ).  

The assumed stationarity of the model solution implies that the eigenvalues of 1F  and 
1( 2) 1J J−  are inside the unit circle. Solving forward (8) yields:  

 1 1
1 1 2

0

(( 2) 1) ( 2) ( 22 ){ }
j

j
t t j t j

j

dx J J J G Rξε η
=∞

− − ∗
+ + + +

=

= − +Π +∑ .                    (9)   

As t t tdx E dx=  holds, and 0t t j s t t j sE Eε η+ + + += =   0s∀ ≥ ,  (9) implies:  2tdx R= , and thus:  

                                                               (1) 0tdx = .                                                                 (10) 
(9) and (7) imply:  
                                                      (1)

1 11 3t t tdy F dy F ξε+ += + .                                                 (11) 
 
2.2. Higher order approximations 
To n th−  order accurate solutions ( 2n ≥ ),  take an  n th−  order Taylor expansion of (2):  
                           1 1 1 1 12

0 1 2 ( )i n
t t t i t t ni

G d G d G i P d Rω ω ξε η=
+ + + + +=
= + + Θ Ψ +Π +∑ ,                   (12) 

where 1 1 1( ; ; )t t t tω ω ξε+ + +Ψ = , while 1,..., nΘ Θ are matrices. Using (3), we can transform (12) 
into:  
               1 1 1 1 1 12

0 ( ; ) 1 ( ; ) 2 ( )i n
t t t t t i t t ni

K dy x K dy x G i P d Rξε η=
+ + + + + +=

= + + Ω Λ +Π +∑ ,              (13) 

with 1 1 1 1( ; ; ; ; )t t t t t ty x y x ξε+ + + +Λ = , where 1,..., nΩ Ω  are matrices.  3 
 Premultiplying (13) by T  (see (6)) yields:  
                1 1 1 1 12

1 1 2 2 1 ( )i n
t t t t t i t ni

dy H dx F dy H dx F i P d Rξε =
+ + + + +=
+ = + + + Φ Λ +∑ ,               (14) 

                       1 1 1 1 12
1 2 22 2 ( )i n

t t t t i t ni
J dx J dx G i P d Rξε η =∗

+ + + + +=
= + +Π + Φ Λ +∑ ,                    (15) 

where 1iΦ  and 2iΦ  are matrices: ( 1; 2)i i T iΦ Φ = Ω  for 2,...,i n= .   
Solving (15) forward and taking conditional expectations gives:  

                                                 
2 In Chris Sims' gensys program, T  corresponds to  the product of the matrices tmat and  q: T tmat q= ∗ .  
3 iΩ  (for 1, ...,i n= ) is a function of  iΘ  and of  Ζ . Determining  iΩ  is simple but tedious. Interested readers 
may consult the computer code for the details. Analogous remarks apply to many of the coefficients in the rest of 
this paper.  
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                            ( ) 1 1 ( )
12

0
(( 2) 1) ( 2) 2( ( )){ }

s
i nn s n

t t i ti
s

sdx J J J E i P d
=∞

=− −
+ +=

=

= − Φ Λ∑ ∑ .                        (16) 

Thus, to determine ( )n
tdx  we have to compute the path of the 2nd  to n th− order powers and 

cross-products of  the state variables. Given such a path, and  a solution for ( )n
tdx , the time 

path for ( )
1( ) n

tdy +  can be determined recursively using (14). An n th−  order accurate solution 
for tω  can then be computed using (3): ( ) 1 ( ) ( )( ) (( ) ; ( ) )n n n

t t td Z dy dxω −= .  
 The algorithm described below is based on the fact that  that ( )

1( ) n
i tP d +Λ   (for 

2,...,i n= ) can be determined from (1)
1( )td +Λ , (2)

1( )td +Λ , ., ( 1)
1( ) n

td −
+Λ . For example, a second 

order  accurate model solution requires knowledge of (2)
2 ( )tP dΛ . 2 ( )tP dΛ  is a vector 

consisting of  the products of the elements of  tdΛ . Let tdk  and tdq  be two elements of tdΛ . 
Note that  
                                               (2) (1) (1)( )t t t tdk dq dk dq= . 4                                                       (17) 
 To generate a third order accurate model solution, we need a third order accurate 
evaluation of products of pairs and triplets of elements of the vector tdΛ . Such an evaluation 
can be obtained from first- and second order accurate model solution, as the product of two 
variables tdk  and tdq  can be expressed as:  

  (3)( )t tdk dq =  (1) (1) (1) (1){2} {2}( ) ( ) ( ) ( ) ( ) ( )t t t t t tdk dq dk dq dk dq+ + ,                     (18) 
while a third order accurate approximation of the product of three variables tdk , tdq , tdr  is 
given by:       
         (3) (1) (1) (1)( ) ( ) ( ) ( )t t t t t tdk dq dr dk dq dr= .                                               (19) 
 A fourth order accurate model solution requires a fourth order accurate evaluation of 
products of pairs, triplets, and quadruplets of elements of the vector tdΛ . This can be 
obtained from first order, second order and third order accurate solutions. Note that  
   (4) (1) (1) (1) (1) (1){2} {2} {3}( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t tdk dq dk dq dk dq dk dq dk dq= + + + +                   

                      (1) {2} {2}{3}( ) ( ) ( ) ( )t t tdk dq dk dq+ ,                      (20) 
 
   (4) (1) (1) (1) (1) (1){2}( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t tdk dq dr dk dq dr dk dq dr= + +  

                                                                (1) (1) (1) (1){2} {2}( ) ( ) ( ) ( ) ( ) ( )t t t t t tdk dq dr dk dq dr+ ,          (21) 
 
                             (4) (1) (1) (1) (1)( ) ( ) ( ) ( ) ( )t t t t t t t tdk dq dr ds dk dq dr ds= .                                      (22) 
 
 
2.2.1. Second order accurate solution  
For 2n = ,  (14) and (16) are given by:  
                        1 1 1 2 1 31 1 2 2 21 ( )t t t t t tdy H dx F dy H dx F P d Rξε+ + + ++ = + + +Φ Λ + ,                 (23) 

                                 (2) 1 1 (2)
2 1

0
(( 2) 1) ( 2) 22( ( ))

s
s

t t t
s

sdx J J J E P d
=∞

− −
+ +

=

= − Φ Λ∑ .                              (24) 

 
 Let   
              2

1 2 12 ; (( ; ))( )t t tZ P dyξ ξε+ +≡ ,                                                     (25) 
                                                 
4 Note that  (1) (1) (1) (1)

2 2 2( )( ) .t t t t t tdk dq dk R dq R dk dq R= + + = +  
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                                           2
22 ( ; ( ))t th P dyξ≡ .                                                          (26) 

 
(17) implies that (2) (1)

2 1 2 1( ( )) (( ) )t tP d P d+ +Λ = Λ . It follows from (10),(11) that  
                                    (1)

1 1 1( ) ( 1 2 ;0 ; ;0 ; )
x xt t t n t n td F dy F dyξε ξε+ + +Λ = + .                            (27) 

Hence, (2)
2 1( ( ))tP d +Λ  is a linear function of the squares and cross-products of the vector 

1( ; )t tdy ξε + , and thus of the elements of  2 1(( ; ))t tP dy ξε + . Thus we can write   
              (2)

2 1 121 ( ( )) 21 2t tP d Z+ +Φ Λ = Ψ ,      (2)
2 1 122 ( ( )) 22 2t tP d Z+ +Φ Λ = Ψ ,                          (28) 

for some matrices 21Ψ , 22Ψ .  
As tdy  and 1tε +  are independent,      12t tE Z +  is a linear function of  2ξ  and of 2 ( )tP dy , 

and thus:   
                                                 12 2 2t t tE Z h+ = Ξ ,                                                       (29)    

for some matrix 2Ξ . 
 The logic that underlies (28) also implies that   
               (2)

1 1( 2 ) 23 2t th Z+ += Ψ ,                                                    (30) 
for some matrix 23Ψ .   
 Hence,   
                                                       (2)

1( 2 ) 23 2 2t t tE h h+ = Ψ Ξ                                                 (31) 
(28)-(31) imply that (2)

2 122 ( ( )) 22 2 ( 23 2) 2t t t
s

sE P d h+ +Φ Λ = Ψ Ξ Ψ Ξ . Substituting this into (24) 
gives:  

            (2) 2 2t tdx S h= ,  with 1 1

0

2 (( 2) 1) ( 2) 22 2 ( 23 2)
s

s

s

sS J J J
=∞

− −

=

≡ − Ψ Ξ Ψ Ξ∑ .                     (32) 

 Using (28), (30) and (32), we can write (23) as:   
                                               (2)

1 1 1( ) 1 2 2 2t t t tdy F dy F P Zξε+ + += + + ,                                 (33)   
for some matrix 2P .       
 (32), (33) can also be expressed as:  
                                                     (2) 2

21 2 ( )t tdx Q Q P dyξ= + ,                                                  (34) 
                            (2) 2

1 1 2 1( ) 1 2 3 4 (( ; )t t t t tdy F dy F F F P dyξε ξ ξε+ + += + + + ,                           (35) 
where 1, 2, 3Q Q F  and 4F  are matrices/vectors.  
 (34),(35) have the same form as the second order accurate solutions derived by Sims 
(2000) and by Schmitt-Grohé and Uribe (2004). Application of the second-order accurate 
algorithm presented here to several models yielded coefficients 1, 2, 3, 4F F F F  and 1, 2M M  
that are numerically indistinguishable from coefficients implied by the Sims (2000) algorithm.   
 
 
2.2.2. Third order accurate solution 
For n=3, (14) and (16) are given by:  
         1 1 1 2 1 3 1 41 1 2 2 21 ( ) 31 ( )t t t t t t tdy H dx F dy H dx F P d P d Rξε+ + + + ++ = + + +Φ Λ +Φ Λ + ,        (36) 

             (3) 1 1 (3) (3)
2 1 3 1

0
(( 2) 1) ( 2) 22( ( )) 32( ( )){ }

s
s

t t t t
s

s sdx J J J E P d P d
=∞

− −
+ + + +

=

= − Φ Λ +Φ Λ∑ .             (37) 

Let  
     2 2

1 2 1 1 3 13 ; ( ; ); ( ; ); (( ; )( )t t t t t t tZ P dy dy P dyξε ξε ξεξ ξ+ + + +≡ ,                                (38) 
                                      and   2 2

2 33 ; ( ); ; ( )( )t t t th P dy dy P dyξ ξ≡ .                                        (39) 
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(30), (32), (34), (35)   imply:  
   2 2 2

1 2 1 2 1 2
2{ }( ) 3 4 (( ; ); 2 23( ; (( ; )); 0 ; 1 2 ( ); 0 ),(

yt t t t t n t md F F P dy S P dy Q Q P yξ ξε ξ ξε ξ+ + +Λ = + Ψ +    (40) 

i.e. 1
2{ }( )td +Λ  is a linear function of 12tZ + .  

 (17), (18), (19), (27), (40) imply that (3)
2 1( ( ))tP d +Λ  can be expressed as linear functions 

of 13tZ + . Thus:  
         (3) (3)

2 1 3 1 121 ( ) 31 ( ) 31 3t t tP d P d Z+ + +Φ Λ +Φ Λ = Ψ ,                                       (41) 
        (3) (3)

2 1 3 1 122 ( ) 32 ( ) 32 3t t tP d P d Z+ + +Φ Λ +Φ Λ = Ψ ,                                      (42) 
for some matrices 31Ψ  and 32Ψ . 
  As tdy  and 1tε +  are independent, and as the third moments of the elements of the 
vector 1tε +  are zero,  13t tE Z +  is a linear function of 3th :   

      13 3 3t t tE Z h+ = Ξ ,                                                         (43) 
for some matrix 3Ξ .   

The logic that underlies (41),(42)  also implies that  
                                             (3)

1 1( 3 ) 33 3t th Z+ += Ψ ,                                                  (44)                    
for some matrix 33Ψ .  Hence,  

                                            (3)
1( 3 ) 33 3 3t t tE h h+ = Ψ Ξ .                                     (45) 

 (42), (43), (45) imply (3) (3)
2 1 3 122 ( ) 32 ( ) 32 3( 33 3) 3{ }t t t ts s

sE P d P d h+ + + +Φ Λ +Φ Λ =Ψ Ξ Ψ Ξ . 
Therefore,  

                   (3) 3 3t tdx S h= , with 1 1

0

3 (( 2) 1) ( 2) 32 3 ( 33 3)
s

s

s

sS J J J
=∞

− −

=

≡ − Ψ Ξ Ψ Ξ∑ .               (46)  

Using (41), (44) and (46), we can write (36) as:  
                                        (3)

1 1 1( ) 1 2 3 3t t t tdy F dy F P Zξε+ + += + + ,                                        (47) 
for some matrix P3.  

(46), (47) imply: 
                                (3) 2 2

2 31 2 ( ) 3 4 ( )t t t tdx Q Q P dy Q dy Q P dyξ ξ= + + + ,                                (48) 
(3) 2 2

1 1 2 1 1 3 1( ) 1 2 3 4 (( ; ) 5 ( ; ) 6 (( ; )t t t t t t t t tdy F dy F F F P dy F dy F P dyξε ξ ξε ξ ξε ξε+ + + + += + + + + + ,    (49)    
where 1, 2, 3, 4, 3, 4, 5Q Q Q Q F F F  and 6F  are matrices/vectors.  
 The coefficients of the first order terms in (49) (i.e. 1, 2F F ) are, by construction 
identical to the corresponding coefficients in the first- and second order accurate solutions 
(11), (35). It appears that the coefficients of the second order terms 1, 2, 3, 4Q Q F F  are also 
identical across the second- and third order accurate solutions (34)-(35) and (48)-(49). A 
proof of this is provided in the Appendix.  
 
 
2.2.3. Fourth order accurate solution 
The derivation of a fourth order accurate solution follows the same logic as the previous 
discussions. For n=4, (14) and (16) are given by:  
  1 1 1 2 1 3 1 4 1 51 1 2 2 21 ( ) 31 ( ) 41 ( )t t t t t t t tdy H dx F dy H dx F P d P d P d Rξε+ + + + + ++ = + + +Φ Λ +Φ Λ +Φ Λ + ,   (50) 

(4) 1 1 (4) (4) (4)
2 1 3 1 4 1

0
(( 2) 1) ( 2) 22( ( )) 32( ( )) 42( ( )){ }

s

t t t t t
s

s
s s sdx J J J E P d P d P d

=∞
− −

+ + + + + +
=

=− Φ Λ +Φ Λ +Φ Λ∑ .   (51) 

(44), (46), (47) and (48),  imply:  
                 2

1 1 3 1 1
{3}( ) 5 ( ; ) 6 (( ; ); 3 33 3 ;(t t t t t td F dy F P dy S Zξ ξε ξε+ + + +Λ = + Ψ  
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                                                                           2
30 ; 3 4 ( ); 0 .)

yn t t mQ dy Q P dyξ +                 (52) 
Let 

2 2 4 2
1 2 1 1 3 1 2 1 4 14 ; ( ; ); ( ; ); (( ; ) ; ; (( ; )); (( ; )( )t t t t t t t t t t tZ P dy dy P dy P y P yξε ξε ξε ξ ξ ε εξ ξ+ + + + + +≡ ,         (50) 

                       2 2 4 2
2 3 2 44 ; ( ); ; ( ); ; ( ); ( )( )t t t t t th P dy dy P dy P dy P dyξξ ξ ξ≡ .                       (51)  

Using (17)-(22), (27), (40) and (43), we obtain:  
                        (4) (4) (4)

2 1 3 1 4 1 121( ( )) 31( ( )) 41( ( )) 41 4t t t tP d P d P d Z+ + + +Φ Λ +Φ Λ +Φ Λ = Ψ , 
                        (4) (4) (4)

2 1 3 1 4 1 122( ( )) 32( ( )) 42( ( )) 42 4t t t tP d P d P d Z+ + + +Φ Λ +Φ Λ +Φ Λ = Ψ ,  
for some matrices 41Ψ  and 42Ψ . Also,  
           14 4 4t t tE Z h+ = Ξ ,  
                          and      (4)

1( 4 ) 43 4t th Z+ = Ψ ,  (4)
1( 4 ) 43 4 4t t tE h h+ = Ψ Ξ , 

for some matrices 4Ξ  and 43Ψ . We have  

              (4)( ) 4 4t tdx S h= , with 1 1

0
4 (( 2) 1) ( 2) 32 4 ( 42 4)

s
s

s

sS J J J
=∞

− −

=

≡ − Ψ Ξ Ψ Ξ∑ ,               (52) 

and                                  (3)
1 1 1( ) 1 2 4 4t t t tdy F dy F P Zξε+ + += + + ,                                        (53) 

for some matrix 4P .  
 (52), (53) can be written as:  

   (4) 2 2 4 2
1 2 1 1 3 1 2 4( ) 1 2 ( ) 3 4 ( ) 5 6 ( ) 7 ( )t t t t t tdx Q Q P dy Q dy Q P dy Q Q P dy Q P dyξ ξ ξξ+ + + += + + + + + + ,   (54)                    

 
(4) 2 2

1 1 2 1 1 3 1( ) 1 2 3 4 (( ; ) 5 ( ; ) 6 (( ; )t t t t t t t t tdy F dy F F F P dy F dy F P dyξε ξ ξε ξ ξε ξε+ + + + += + + + + + +  
                                 4 2

2 1 4 17 8 (( ; )) 9 (( ; )t t t tF F P y F P yξ ξ ε ε+ ++ + .                                          (55)    
where 1, 2, 3, 4, 4, 6, 7, 3, 4, 5, 6, 7, 8Q Q Q Q Q Q Q F F F F F F  and 9F  are matrices/vectors.  
 
 
2.3.  Related approaches 
The computational approach used here differs from that of  Judd and Guu (1993), Judd and 
Gaspar (1996), Judd (1998) (and most subsequent papers that compute Taylor expansions of 
the policy function). These authors obtain the coefficients of an n th−  order Taylor expansion 
of by computing the 1st to n th−  order (cross-) partial derivatives of 

1 1( , , )( , ) ( , ),t t t t tt E GH f ω ε ω εω ξ ξ ξ ξ+ +≡  with respect to tω  and ξ  , at the steady state. Note that 
these derivatives all have to equal zero, as 0( , ) , 0t tH ω ωξ ξ= ∀ ∀ ≥ . Thus:  
   

                     , 0
( (, ) / , ) 0 for (56)|

t

t t
i i i = 1,..,n.H

ω ω ξ
ω ξ ω ξ

= =
∂ ∂ =          

This gives a system of equations in the (unknown) 1st to n th−  order (cross-) partial 
derivatives of the policy function f . These partial derivatives can be obtained sequentially: 
the intercept of 1,( , )t tf ω εξ ξ+  is determined by the condition ( , , )( 0,0), 0 0G f ω ω = ; first-order 
derivatives can be found by considering (56) with 1i = . (56) with 2i =  pins down the second 
order derivatives, etc.  
 The basic difference between that approach and the approach used here can be 
illustrated using the following simple static model (see Judd (1998), p.449):  
                                                                    ( , ) 0g x ε = ,                                                         (57) 
 where x  and ε  are an endogenous and an exogenous variable, respectively. The solution of 
that model is given by a function  
                                               ( )x f ε=  that satisfies ( ( ), ) 0g f ε ε ε= ∀ .                          (58) 
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We are interested in computing a Taylor expansion of f  around benchmark value 0ε :  
2 21 1

2 6' '' ( ) ''' ( ) ...dx f d f d f dε ε ε= + + + , with 0dx x x= − , 0dε ε ε= − ,  0 0( , ) 0g x ε = . (All 
derivatives are evaluated at 0ε ).  
The Judd approach at determining ', '', ''f f f  etc. is based on these conditions:      

            0
( ( ), ) / 0 1,.., .|i ig f i kε ε ε ε ε∂ ∂ = ==  

For example: 1 2' 0g f g+ = , which implies that 2 1' /f g g=− ; 2
11 12 1 22( ') 2 ' '' 0.g f g f g f g+ + + =  

Substituting 2 1' /f g g=−  into this expression allows to determine ''f :                        
2

11 2 1 12 1 2 22'' [ ( / ) 2 ( / ) ]f g g g g g g g=− − + .  
 The approach adopted here, by contrast, computes a second-order approximation using 
a (slightly) different procedure: namely a second-order approximations of the squared terms 
(of second-order Taylor expansion) is computed using the first-order solution. A first-order 
Taylor expansion of  (57) gives 1 2 2 0g dx g d Rε+ + = , which implies that 

(1)
2 1( ) ( / )dx g g dε= − . A second-order Taylor expansion gives:  

2 21 1
1 2 11 12 22 32 2( ) ( ) 0g dx g d g dx g dx d g d Rε ε ε+ + + + + = . As 2 (2) (1) 2(( ) ) (( ) )dx dx=  and 

(2) (1)( ) ( )dx d dx dε ε= , we have:  
                       (2) 1 (1) 2 (1) 21 1

1 2 11 12 222 2( ) ( ) (( ) ) ( ) ( )[ ]dx g g d g dx g dx d g dε ε ε−= − + + + .  
This implies that   
                              (2) 2 21

2 1 11 2 1 12 1 2 222( ) ( / ) [ ( / ) 2 ( / ) ] ( )dx g g d g g g g g g g dε ε= − − − + . 
Thus, the implied first and second derivatives of the policy function are identical to those 
obtained using the Judd approach.  
 The approach here is closely related to work by, i.a., Kim and Kim (1999), Woodford 
(1999), and Woodford and Benigno (2003) who have shown that a second-order accurate 
evaluation of conditional and unconditional expected values of tω  (in a model of type (1)) 
can be achieved using a first-order accurate model solution. These methods exploit the fact 
that a first-order accurate (i.e. linear) approximation of the policy function permits a second 
order accurate evaluation of  the squares and cross-products of the state variables (and thus of 
the second moments of these variables).5 However, the methods presented by these authors do 
not readily permit to compute simulated time series { }sω  that are second order accurate.  
 Sutherland (2002) uses a linear approximation of the model to provide a second-order 
accurate evaluation of the conditional expected value of the time path 0 0{ }s sE ω ≥ , given the 
state of the economy at some date 0t = . The paper here adapts and generalizes Sutherland's 
(2002) approach to compute   k-th-order accurate simulated paths { }sω . 6  
 
 
3.  Applying the method 
 
 
 
                                                 
5These papers focus on the computation of welfare.  As the vector tω  can be specified in such a manner that one 
of its elements includes the utility level of the agents assumed in the model, that  approach is sufficient for 
computing expected welfare.  
6 After the research here was completed, papers by Schaumburg (2002) and Lombardo and Sutherland (2004) 
were brought to my attention that present second-order accurate solutions based on the same idea.   
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