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This note corrects Blanchard and Kahn�s (1980) formula for the solu-
tion of a linear dynamic rational expectations model with one prede-
termined and one non-predetermined endogenous variable.

1 INTRODUCTION

In their classical paper, Blanchard and Kahn (1980) [BK] derived the solu-
tion for an important class of dynamic linear rational expectations models.
The BK algorithm has become a standard tool for economic modelers.1 In
general, the model solution is analytically intractable. However, as shown by
BK, a model with one predetermined and one non-predetermined endoge-
nous variable can be handled analytically, which facilitates an intuitive
understanding of the solution. That special case is important (and of peda-
gogical interest) as it includes, e.g., the basic RBC model with fixed labor.
This note shows that the formula provided by BK, for this special case,
includes an error; we also provide the correct formula.2

* Manuscript received 17.9.16; final version received 15.11.16.
† R. Kollmann is also affiliated with the Globalization and Monetary Policy Institute

(Federal Reserve Bank of Dallas) and with the Centre for Applied Macroeconomic
Analysis (Australian National University). We thank Xavier Gabaix for encouraging us
to circulate this note. The research leading to these results has received funding from the
European Community�s Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 612796, �Integrated Macro-Financial Modelling for Robust Policy Design�
(MACFINROBODS).

1The BK algorithm is, e.g., often used to solve linearized dynamic stochastic general equilibrium
models, the workhorses of modern macroeconomics (King and Rebelo, 1999; Schmitt-
Groh�e and Uribe, 2004; Kollmann, 2015). Google Scholar records 2389 cites (09/2016) for
the BK paper.

2Most likely this error is a typing or printing error. BK is a very classical paper, so a correct ver-
sion of all key results in it should be available. BK�s general routine for models with arbi-
trary numbers of states and jump variables (widely used in computer simulation packages)
is accurate.
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2 A LINEAR DYNAMIC MODEL WITH ONE STATE VARIABLE AND ONE JUMP

VARIABLE

Consider the following model (the notation follows BK):

xt11

Etpt11

" #
5A

xt

pt

" #
1

c1

c2

" #
Zt; (1)

where xt is a predetermined variable (�state�), and pt is a non-predetermined

(�jump�) variable. Zt is a (k 3 1) vector of exogenous variables. A5
a11 a12

a21 a22

" #

is a (2 3 2) matrix, and c1; c2 are (1 3 k) vectors. Let k1; k2 be the eigenvalues

of A, with jk1j � jk2j, and let B5
b11 b12

b21 b22

" #
be the matrix of eigenvectors of

A, i.e. AB5BJ, with J5
k1 0

0 k2

" #
. Let C � B21, C5

c11 c12

c21 c22

" #
. Note that

A5BJC. Proposition 1 of BK (p.1308) shows that model (1) has a unique
(non-exploding) solution if and only if jk1j � 1; jk2j > 1. BK (p.1309) state
that then the solution of (1) is:

xt5k1xt211c1Zt211l
X1

i50
k2i21

2 Et21Zt1i21; (2)

pt5a21
12 ðk12a11Þxt1l

X1
i50

k2i21
2 EtZt1i

h i
; (3)

with l � ðk12a11Þk12a12k2: (4)

Comment: When l is given by (4), then l
P1

i50 k2i21
2 Et21Zt1i21 and

l
P1

i50 k2i21
2 EtZt1i are (k 3 1) vectors; thus (2), (3) cannot hold for k >1 as

xt, pt are scalars. As shown below BK�s formula (4) for l is incorrect. The
correct formula is:

l5ðk12a11Þc12a12c2: (5)

Proof: (2) and (3) are special cases of the general solution for linear differ-
ence models (with arbitrary numbers of variables) in BK�s Proposition 1.
(See Appendix.) The general solution for state xt shows that the
correct expression for l in (2) is l52ðb11k1c121b12k2c22Þc21

22 ðc21c11c22c2Þ.
Write this as l5/1c11/2c2, with /1 � 2ðb11k1c12c21

22 c211b12k2c21Þ,
/252ðb11k1c121b12k2c22Þ. A5BJC implies a115b11k1c111b12k2c21 and
a125b11k1c121b12k2c22. Thus /252a12. Substituting b12k2c215a112b11k1c11

into the definition of /1 gives /1 � 2ða111b11k1½c12c21
22 c212c11�Þ. B5C21

implies b115c22=ðc11c222c12c21Þ and c12c21
22 c212c1152b21

11 . Thus

50 The Manchester School

VC 2016 The University of Manchester and John Wiley & Sons Ltd



/15k12a11. This implies (5). The general solution for jump variable pt

shows that equation 3 holds when l is defined by (5). �

APPENDIX

BLANCHARD AND KAHN (1980): THE GENERAL MODEL

Consider the model

Xt11

EtPt11

" #
5A

Xt

Pt

" #
1cZt; (A1)

where Xt is an n 3 1 vector of predetermined variable, and pt is an m 3 1 vector of
non-predetermined variables; Zt is a (k 3 1) vector of exogenous variables. A is an
(n 1 m) 3 (n 1 m) matrix, and c is an (n 1 m) 3 k matrix. Consider the Jordan
canonical form A5C21JC, where C and J are (n 1 m) 3 (n 1 m) matrices. Let the
diagonal elements of J (i.e. the eigenvalues of A) be ordered by increasing absolute
value. Let n (m) denote the number of eigenvalues of A that are on or inside the unit

circle (outside the unit circle). Partition J as J5
J1 0

0 J2

" #
, where J1 and J2 are mat-

rices of dimensions ðnxnÞ and ðmxmÞ respectively. Decompose C, B � C21 and c as

C5
C11 C12

C21 C22

" #
, B5

B11 B12

B21 B22

" #
and c5

c1

c2

" #
, where C11;C12;C21;C22 are matrices

of dimensions ðnxnÞ, ðnxmÞ, ðmxnÞ and ðmxmÞ respectively; B11;B12;B21;B22 have
dimensions ðnxnÞ, ðnxmÞ, ðmxnÞ and ðmxmÞ respectively, while c1 and c2 have dimen-
sions ðnxkÞ and ðmxkÞ respectively. Proposition 1 in Blanchard and Kahn (1980)
states that the model (A1) has a unique (non-explosive) solution if and only if the
number of non-predetermined variables equals the number of eigenvalues of A out-
side the unit circle: m5m. If that condition is met, then the solution is:

Xt5B11J1B21
11 Xt211c1Zt212ðB11J1C121B12J2C22Þ

3C21
22

X1
i50

J2i21
2 ðC21c11C22c2ÞEt21Zt1i21;

Pt52C21
22 C21Xt2C21

22

X1
i50

J2i21
2 ðC21c11C22c2ÞEtZt1i:
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