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Part A. of this Appendix provides supplementary information for the second-order approximated 

RBC model discussed in the paper published in Economics Letters (Kollmann (2017)).  

 

Part B. The technique described in Kollmann (2017) can also be used for likelihood estimation of 

DSGE models that are approximated to an order that is higher than the second order. Part B of 

this Appendix shows how third-order approximated DSGE models can be estimated using 

observation equation inversion.  
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A. Supplementary information for the second-order approximated RBC 

model considered in Kollmann (2017) 
● Comparison between decision rule (4) and modified decision rule (5) 

Table a1 documents that the decision rule (4) and the modified decision rule (5) discussed in 

Kollmann (2017) are (essentially) indistinguishable. An identical sequence of random exogenous 

innovations of length T=500,000 was fed into (4) and into (5). Table a1 shows that the resulting 

time series of endogenous variables are almost perfectly correlated across (4) and (5), and that 

they have (essentially) the same standard deviation. This holds both for levels and for first 

differences of logged simulated endogenous variables.  

 

● Standard deviations of first- and second-order approximated models 

Table a2 reports predicted standard deviations of first- and second-order approximated variables 

(log levels and log first differences). The Table documents that each of the four types of 

exogenous shocks accounts for a sizable share of the variance of GDP (see Panel (a), Col. (1)). In 

the ‘small shocks’ model variant, the first- and second-order approximated models produce 

almost identical standard deviations of endogenous variables (see Panel (a)). In the ‘big shocks’ 

model variant, by contrast, the second-order approximated variables are more volatile than the 

first-order approximated variables; this is, especially, the case for GDP, investment and hours 

worked (see Panel (b)).    
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Table a1.   Second-order approximated RBC model: correlations across time series 
generated by decision rule (4) [ω] and time series generated by the ‘modified’ 
decision rule (5) [ modω ] 
 

 Y C I N K  
  

 (1) (2) (3) (4) (5)  

(a) Model variant with ‘small shocks’ ( 1%, 0.025%)Gθ ψ λσ σ σ σ= = = =  
Correlations between ω  and modω  
Levels      1.0000 1.0000 1.0000 1.0000 1.0000    
First differences 1.0000 1.0000 0.9999 1.0000 1.0000 
 
Relative standard deviations: std(ω )/std( modω ) 
Levels      1.0000 1.0000 1.0000 1.0000 1.0000   
First differences 1.0000 1.0000 1.0000 1.0000 1.0000 
 
Relative standard deviation of difference between decision rules: std(ω - modω )/std( modω ) 
Levels 0.0006 0.0001 0.0030 0.0003 0.0001    
First differences 0.0039 0.0012 0.0168 0.0033 0.0020 
 
(b) Model variant with ‘big shocks’ ( 5%, 0.125%)Gθ ψ λσ σ σ σ= = = =  
Correlations between ω  and modω  
Levels      1.0000 1.0000 0.9999 1.0000 1.0000   
First differences 0.9998 1.0000 0.9967 0.9999 0.9999 
 
Relative standard deviations: std(ω )/std( modω ) 
Levels      1.0000 1.0000 0.9999 1.0000 1.0000    
First differences 1.0000 1.0000 0.9994 1.0000 1.0000    
 
Relative standard deviation of difference between decision rules: std(ω - modω )/std( modω ) 
Levels 0.0027 0.0005 0.0147 0.0014 0.0007 
First differences 0.0192 0.0061 0.0818 0.0164 0.0101 
 
 
Note: Correlations of simulated time series (of variables listed above Cols. (1)-(5)) generated by the 
decision rule (4) and by the ‘modified’ decision rule (5) are reported, as well as the relative standard 
deviation of these two sets of time series. These statistics are reported for variables in log levels, and for 
variables in log first differences. Y: GDP; C: consumption; I: gross investment; N: hours worked; K: capital 
stock. Correlations greater than 0.99995 are reported as 1.0000.   Reported statistics are based on one 
sequence of T=500,000 random exogenous innovations that was fed into (4) and (5).  
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Table a2.  RBC model: predicted standard deviations (in %). Comparison between 
1st order and 2nd order accurate model solutions 
 

 Y C I N K  
  

 (1) (2) (3) (4) (5)  

(a) Model variant with ‘small shocks’ ( 1%, 0.025%)Gθ ψ λσ σ σ σ= = = =  
Variables in levels  
1st order, all shocks      3.34 1.57 10.43 9.68 7.59 
1st order, just θ shock 2.07 1.36 6.20 9.32 4.52 
1st order, just G shock 1.66 0.08 1.50 1.97 1.08 
1st order, just ψ shock 1.14 0.75 3.43 0.96 2.49 
1st order, just λ shock 1.66 0.21 7.51 1.61 5.48 
 

2nd order, all shocks      3.34 1.57 10.43 9.68 7.59 
 

First-differenced variables  
1st order, all shocks       0.67  0.17  2.60 1.13 0.18     
2nd order, all shocks      0.67 0.17 2.60 0.13 0.18   
 
(b) Model variant with ‘big shocks’ ( 5%, 0.125%)Gθ ψ λσ σ σ σ= = = =  
Variables in levels  
1st order, all shocks     16.72 7.83 52.14 48.39 37.95 
2nd order, all shocks    17.11 7.83 52.97 48.67 38.21 
 

First-differenced variables  
1st order, all shocks   3.33  0.86 12.98 5.66 0.91    
2nd order, all shocks      3.41 0.87 13.37 5.77 0.92 
 

 
Note: Standard deviations (in %) of simulated variables (listed above Cols. (1)-(5)) are shown for the RBC 
model. Rows labeled ‘1st order’ and ‘2nd order’ show standard deviations predicted by the first-  and second-
order accurate model solutions, respectively. The statistics are reported for variables in log levels, and for 
variables in log first differences.  Y: GDP; C: consumption; I: gross investment; N: hours worked; K: capital 
stock. All statistics are computed using one simulation run of 500,000 periods. 
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B. Tractable Likelihood-Based Estimation of Third-Order Approximated 
DSGE Models  
The technique described in Kollmann (2017) can also be used for likelihood estimation of DSGE 

models that are approximated to an order that is higher than the second order. This is illustrated 

here for third-order approximated models.  

The third-order accurate model solution of the DSGE model (1) is given by:  

    2 2 2
1 0 1 1 2 2 1 11 12 1 22 1 1( ) ( ) ...t t t t t t t t tF F F x F F F x x F x Fξ ξω ξ ξ ξ ε ε ε ε+ + + + += + + + + + ⊗ + ⊗ + ⊗ +    

          111 112 1 122 1 1 222 1 1 1,t t t t t t t t t t t tF x x x F x x F x Fε ε ε ε ε ε+ + + + + +⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗  with .t tx ω=Λ        (B.1)  

1 2 111 112 122 222, , , , ,F F F F F Fξ ξ   are matrices that are functions of the structural model parameters        

0 1 2 11 12 22( , , , , ,F F F F F F  are identical to the corresponding coefficients in the second-order accurate 

model solution; see (2) in Kollmann (2017)). 

 ‘Pruning’ is also essential for applied work based on third-order approximated models-- 

the ‘un-pruned’ system (B.1) can exhibit explosive dynamics, in response to big shocks (see 

discussion in Kollmann (2017)). To apply the logic of pruning to equation (B.1), note that the 

following conditions hold up to third-order accuracy:     

                         2 2 (1),t tx xξ ξ=     (2) (1) (2) (2) (1)( ),t t t t t t tx x x x x x x⊗ = ⊗ + ⊗ −   (2)
1 1,t t t tx xε ε+ +⊗ = ⊗   

             (1) (1) (1),t t t t t tx x x x x x⊗ ⊗ = ⊗ ⊗ (1) (1)
1 1,t t t t t tx x x xε ε+ +⊗ ⊗ = ⊗ ⊗  (1)

1 1 1 1,t t t t t tx xε ε ε ε+ + + +⊗ ⊗ = ⊗ ⊗  1         (B.2) 

where the superscript (i) denotes variables solved to ith accuracy and ( ) ( ).i i
t tx ω=Λ The Dynare 

toolbox (Adjemian et al. (2014)) implements a pruned version of the third-order solution  in 

which product terms in equation (B.1) are replaced by their third-order accurate equivalents 

stated in (B.2):  
2 2 (1) 2 (2) (1) (1) (2) (1) (2)

1 0 1 1 2 2 1 11 12 1 22 1 1( ) { ( )} ...t t t t t t t t t t t t tF F x F x F F F x x x x x F x Fξ ξω ξ ξ ξ ε ε ε ε+ + + + += + + + + + ⊗ + ⊗ − + ⊗ + ⊗ +

                  
(1) (1) (1) (1) (1) (1)

111 112 1 122 1 1 222 1 1 1.t t t t t t t t t t t tF x x x F x x F x Fε ε ε ε ε ε+ + + + + +⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗              (B.3) 

(This pruned third-order solution was also proposed by Kollmann (2004).) The dynamics of the 

first- and second-order approximated quantities is governed by (3) and (4) in Kollmann (2017), 

restated here for convenience:  

                                                 
1For variable ta  we can write (1) (2)

t ta a R= +  and (2) (3),t ta a R= +  where ( )nR contains terms of order n or higher in 
deviations from the steady state. The product t ta b  can thus be expressed as 

(1) (2) (1) (3) (1) (2) (1) (3) (1) (2) (2) (1) (1) (4)( )( ) ( ) ;t t t t t t t t t t t t ta b a a a R b b b R a b a a b R= + − + + − + = + − +  hence, (3) (1) (2) (2) (1) (1)( ) ( ) .t t t t t t ta b a b a a b= + −  (Note that 
(2) (1) (2),t ta a R− = and hence  (2) (1) (2) (1) (4)( )( ) .)t t t ta a b b R− − =   The same logic shows that (3) (1) (1) (1)( ) .t t t t t ta b c a b c=  
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           (1) (1)
1 1 2 1,t t tF x Fω ε+ += +  (2) 2 (2) (1) (1) (1)

1 0 1 2 1 11 12 1 22 1 1t t t t t t t t tF F x F F x x F x Fω ξ ε ε ε ε+ + + + += + + + ⊗ + ⊗ + ⊗ .          (B.4)               

The moving average representation of the third-order pruned solution (B.3) depends on first-, 

second and third-order terms in exogenous innovations (ε), but not on higher-order terms. The 

third-order pruned system (B.3) is stationary if the first-order system is stationary.  

 To allow observation equation inversion, I replace squares and cubes of 1tε +  in (B.3) by 

their expected values. This gives the ‘modified’ decision rule 
2 2 (1) 2 (2) (1) (1) (2) (1) (2)

1 0 1 1 2 2 1 11 12 1 22 1 1( ) { ( )} ( ) ...t t t t t t t t t t t t tF F x F x F F F x x x x x F x F Eξ ξω ξ ξ ξ ε ε ε ε+ + + + += + + + + + ⊗ + ⊗ − + ⊗ + ⊗ +

                         
(1) (1) (1) (1) (1) (1)

111 112 1 122 1 1( ).t t t t t t t t tF x x x F x x F x Eε ε ε+ + +⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗                                (B.5) 

Note that 1 1 1( ) 0,t t tE ε ε ε+ + +⊗ ⊗ =  because 1tε +  is normally distributed. The subsequent discussion 

assumes that (B.5) is the true data generating process.  

Assume that the econometrician observes a vector 1tz +  comprising m elements of the 

vector 1tω +  (recall that m is the number of exogenous innovations). Thus, the observation 

equation is 1 1,t tz Qω+ += ⋅ where Q  is an mxn selection matrix. Substitution of equation (B.5) into 

the observation equation gives 1 1t t t tz γ λ ε+ += + , where  

2 2 (1) (2) (1) (1) (2) (1) (1) (1) (1) (1)
0 1 1 11 22 1 1 111 122 1 1[ { ( )} ( ) ( )]t t t t t t t t t t t t t t t tQ F F x F x F x x x x x F E F x x x F x Eξγ ξ ξ ε ε ε ε+ + + +≡ ⋅ + + + ⊗ + ⊗ − + ⊗ + ⊗ ⊗ + ⊗ ⊗

and tλ  is an  xm m  matrix such that 2 (2) (1) (1)
1 2 2 1 12 1 112 1[( ) ].t t t t t t t tQ F F F x F x xξλ ε ξ ε ε ε+ + + +≡ ⋅ + + ⊗ + ⊗ ⊗  

Provided tλ  is non-singular, we thus have: 

                                                              1
1 1( )t t t tzε λ γ−
+ += − .                                                        (B.6) 

Given the initial states (1) (2)
0 0 0, ,x x x  and data 1{ }T

t tz =  one can recursively extract the 

innovations 1{ }T
t tε =  using (B.4),(B.5) and (B.6). The log likelihood of the data (conditional on 

(1) (2)
0 0 0, ,x x x )  is:  

            (1) (2) 2 2 11
1 0 0 0 12 2 2 1

ln ({ } | , , ) ln(2 ) ln | | { ' ( ) ln | |}TT mT T
t t t t tt

L z x x x ε επ ξ ε ξ ε λ−
= −=

= − − Σ − Σ −∑ .        (B.7) 

Structural model parameters (and the initial states) can be estimated by maximizing this function.  

 

Illustration: RBC model, approximated to third-order 

I compute a third-order approximation of the RBC model described in Kollmann (2017). Both 

the ‘small shocks’ variant of that model, and the ‘big shocks’ variant are considered. Table b1 

documents that decision rule (B.3) and the modified decision rule (B.5) are (essentially) 
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indistinguishable. An identical sequence of random exogenous innovations of length T=500,000 

was fed into (B.3) and into (B.5). Table b1 shows that the resulting time series of endogenous 

variables are almost perfectly correlated across (B.3) and (B.5), and that they have (essentially) 

the same standard deviations. This holds both for levels and for first differences of logged 

simulated endogenous variables.  

Table b2 reports predicted standard deviations of first-, second- and third-order 

approximated variables (log levels and log first differences). In the ‘big shocks’ RBC model 

variant, GDP, investment and capital are noticeably more volatile under a third-order 

approximation than under first- or second-order approximations (see Panel (b)).   

Finally, I estimate the model parameters using simulated time series, by maximizing the 

likelihood function (B.7). As for the Monte Carlo described in Kollmann (2017), I generated 30 

simulation runs of 100 periods each.2 In computing the sample likelihood, I assume that the 

initial states (1) (2)
0 0 0, ,x x x  equal their unconditional mean. The first 10 periods in each simulation 

run are used as a training sample. Table b3 reports the median, mean and standard deviation of 

the estimated model parameters across the 30 simulation runs, for the ‘small shocks’ model 

variant (Columns (1)-(3)) and for the ‘big shocks’ variant (Cols. (4)-(6)). As for the second-order 

accurate model discussed in Kollmann (2017), most model parameters are tightly estimated.  

 
 
 
 
References 

Adjemian, S., H. Bastani, M. Juillard, F. Mihoubi, G. Perendia, J. Pfeifer, M. Ratto, S. Villemot,  

2014. Dynare: reference manual, Version 4.4.3., Working Paper, CEPREMAP.   

Kollmann, R., 2004. Solving Non-Linear Rational Expectations Models: Approximations Based 

on Taylor Expansions, WP, University of Paris XII.  

Kollmann, R., 2017. Tractable Likelihood-Based Estimation of Non-Linear DSGE Models. 

Economics Letters (available online 6 September 2017),   

http://dx.doi.org/10.1016/j.econlet.2017.08.027 .  

 

                                                 
2To eliminate the influence of initial conditions, the model was simulated over 5100 periods; the first 5000 periods 
were discarded.  



8 
 

Table b1. Third-order approximated RBC model: correlations across time series generated 
by decision rule (B.3) [ω] and time series generated by ‘modified’ decision rule (B.5) [ modω ] 
 

 Y C I N K  
  

 (1) (2) (3) (4) (5)  

(a) Model variant with ‘small shocks’ ( 1%, 0.025%)Gθ ψ λσ σ σ σ= = = =  
Correlations between ω  and modnonω −  
Levels      1.0000 1.0000 1.0000 1.0000 1.0000    
First differences 1.0000 1.0000 0.9999 1.0000 1.0000 
 
Relative standard deviations: std(ω)/std( modω ) 
Levels      1.0000 1.0000 1.0000 1.0000 1.0000   
First differences 1.0000 1.0000 0.9996 1.0000 1.0000 
 
Relative standard deviation of difference between decision rules: std(ω - modω )/std( modω ) 
Levels 0.0006 0.0001 0.0030 0.0003 0.0001    
First differences 0.0039 0.0012 0.0169 0.0033 0.0020 
 
(b) Model variant with ‘big shocks’ ( 5%, 0.125%)Gθ ψ λσ σ σ σ= = = =  
Correlations between ω  and modnonω −  
Levels      1.0000 1.0000 0.9999 1.0000 1.0000   
First differences 0.9998 1.0000 0.9961 0.9999 1.0000 
 
Relative standard deviations: std(ω)/std( modω ) 
Levels      1.0000 1.0000 0.9994 1.0000 1.0000    
First differences 0.9998 1.0000 0.9910 1.0000 1.0000    
 
Relative standard deviation of difference between decision rules: std(ω - modω )/std( modω ) 
Levels 0.0024 0.0005 0.0155 0.0015 0.0007 
First differences 0.0179 0.0065 0.0896 0.0168 0.0101 
 
 
Note: Correlations of simulated time series (of variables listed above Cols. (1)-(5)) generated by decision 
rule (B.3) and by the ‘modified’ decision rule (B.5) are reported, as well as the relative standard deviation 
of these two sets of time series. The statistics are reported for log levels and for log first differences of 
endogenous variables. Y: GDP; C: consumption; I: gross investment; N: hours worked; K: capital stock. 
Correlations greater than 0.99995 are reported as 1.0000.   Reported statistics are based on one simulation 
run of 500,000 periods.  
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Table b2.  RBC model: predicted standard deviations (in %). Comparison between 
1st order, 2nd order and 3rd order accurate model solutions 
 

 Y C I N K  
  

 (1) (2) (3) (4) (5)  
(a) Model variant with ‘small shocks’ ( 1%, 0.025%)Gθ ψ λσ σ σ σ= = = =  
Variables in levels  
1st order        3.34 1.57 10.43 9.68 7.59 
2nd order       3.34 1.57 10.43 9.68 7.59 
3rd order      3.36 1.57 10.48 9.67 7.62 
 
 

First-differenced variables  
1st order       0.67  0.17  2.60 1.13 0.18     
2nd order      0.67 0.17 2.60 1.13 0.18   
3rd order       0.67 0.17 2.61 1.13 0.18    
 
 
(b) Model variant with ‘big shocks’ ( 5%, 0.125%)Gθ ψ λσ σ σ σ= = = =  
Variables in levels  
1st order      16.72 7.83 52.14 48.39 37.95 
2nd order     17.11 7.83 52.97 48.67 38.21 
3rd order   19.70 7.83 59.36 47.90 42.86  
 

First-differenced variables  
1st order   3.33  0.86 12.98 5.66 0.91    
2nd order       3.41 0.87 13.37 5.77 0.92 
3rd order       3.80 0.85 14.46 5.87 0.96 
 

 
Note: Standard deviations (in %) of simulated variables (listed above Cols. (1)-(5))  are shown for the RBC 
model. Rows labeled ‘1st order’, ‘2nd order’ and ‘3rd order’ show standard deviations predicted by the first-,   
second- and third- order accurate model solutions, respectively. The statistics are reported for log levels and 
for log first differences of endogenous variables. Y: GDP; C: consumption; I: gross investment; N: hours 
worked; K: capital stock. All statistics are computed using one simulation run of 500,000 periods. 
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Table b3. Monte Carlo: parameter estimates for third-order approximated RBC model  
 

 Model variant Model variant  
Parameter with ‘small  shocks’ with ‘big shocks’  
 (1) (2) (3) (4) (5) (6)   
 

         Median   Mean Std         Median Mean Std  
σ          10.67  11.17 2.74 10.95 12.42 3.89  
η  0.31 0.43 0.47 0.45 0.69 0.69  

θρ  0.99 0.99 0.003 0.99 0.99 0.003  

Gρ  0.98 0.98 0.01 0.98 0.98 0.03  

ψρ  0.99 0.99 0.01 0.99 0.98 0.01  

λρ  0.96 0.95 0.05 0.98 0.96 0.05  
sθ (%) 0.99 1.00 0.07 4.97 4.97 0.34  

Gs (%) 0.98 0.98 0.09 4.77 4.88 0.59  
sψ (%) 0.97 1.13 0.40 5.34 6.86 3.24  
sλ (%) 0.035 0.042 0.025 0.18 0.19 0.09   
 
 
Note: The Table summarizes parameters estimates across 30 simulation runs of 100 periods. Cols. 
labelled ‘Median’, ‘Mean’ and ‘Std’ report the median, mean and standard deviation of estimated 
parameters (listed in left-most column) across the 30 runs. Cols. labelled (1)-(3): ‘small shocks’ 
model variant. Cols. (4)-(6): ‘big shocks’ model variant.   
 The true parameter values are: 10,σ =  0.25,η= 0.99.Gθ ψ λρ ρ ρ ρ= = = = True standard 

deviations of exogenous innovations in ‘small shocks’ model variant: Gs s s 1%, s 0.025%.θ ψ λ= = = =   

’Big shocks’ variant: Gs s s 5%,θ ψ= = = 0.125%.λσ =   
 


