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0. Introduction

In order to compare complex algorithms such as the ones necessary to compute the solution of nonlinear dynamic
stochastic general equilibrium models, one needs to define clearly the dimensions along which the results will be
compared. Furthermore, it is also important to compare the results of the different algorithms using the same
implementation of the tests so that one can exclude differences in the administration of the testing procedure. For this
reason, separately from the implementation of each algorithm by the participants to the comparison project, we have
developed a computer program that takes as input the solution provided by each group and subjects it to an identical set
of tests.

Following previous literature (i.e. Aruoba et al., 2006; Den Haan and Marcet, 1994; Heer and Maussner, 2008; Judd,
1992), we focus on evaluating errors of approximation: the errors that one obtains by plugging back the approximated
solution in the original problem. We implement this approach in two different setups: the first test computes errors of
approximation at different points in the state space located on a sphere around the deterministic steady state of the
problem. This test informs us on the ability of a given solution method to provide accurate approximations of the solution
further and further away from a point ‘‘easy’’ to solve for: the deterministic steady state. Of course, ordering points by their
distance to the steady state does not indicate how likely these points are in simulated data. This remark motivates the
second test: measuring the errors of approximation along a given simulation path. More precisely, each solution is
simulated starting from the same initial point, the deterministic steady state, and subjected to the same set of random
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shocks. In the literature, the test proposed by Den Haan and Marcet (1994) is often used to test whether prediction errors
implied by the numerical solutions are orthogonal to the elements of information set. Finally, we did not retain it in the
testing procedure used for this exercise, for reasons that we present below.

The multi-country RBC models used in this comparison exercise are introduced in Den Haan et al. (this issue).
The four basic specifications try to introduce both a simple model such as the first one that considers fixed labor and a simple
Cobb–Douglas function, and more complicated setups with endogenous labor, CES production functions and asymmetries
between countries. The number of countries varies from two to ten. Altogether the comparison involves 30 different models.

All approaches provide an approximated solution to the first-order conditions of the social planner optimization
problem. In the first section, we provide a formal presentation of the model and derive the first-order conditions of the
social planner problem. The detailed specifications and the parameterization of the 30 models are given in Section 2. The
approximation errors are defined in Section 3 along with the specification of the tests retained in the comparison. In
Section 4, we describe the computer program that serves as the test bench. It is this software that is used in the comparison
paper by Kollmann et al. (this issue).
1. Description of the model economies

1.1. General setup

We consider a multi-country RBC model with complete asset markets. We denote by N the number of countries.
A single homogenous good is produced, traded and consumed across countries.

Production of country j 2 f1, . . . ,Ng at date t is equal to aj
tf

jðkj
t ,‘

j
tÞ, where f j is the production function, kj

t is the beginning-
of-period capital stock, ‘j

t is hours worked, and aj
t is productivity level. The law of motion of capital is

kj
tþ1 ¼ ð1�dÞk

j
tþ ijt ð1Þ

where ijt is investment and d is the depreciation rate of capital.
The law of motion of productivity is

lnaj
t ¼ rlnaj

t�1þsðe
j
tþetÞ ð2Þ

where ej
t is a country specific shock and et is a worldwide shock. Shocks are assumed to be independent and identically

distributed Gaussian variables with zero mean and unit variance. Parameters r and s determine the autocorrelation and
variance of the logarithm of the productivity level, respectively.

There is an adjustment cost on the capital stock

Gj
t ¼

f
2

kj
t

ijt

kj
t

�d

 !2

ð3Þ

where parameter f governs the intensity of the friction. The value of this parameter has an impact on the dimension of the
state space. When f40, all the country-level capital stocks are state variables. In contrast, when f¼ 0 (i.e. when there is
no adjustment cost), only the world capital stock matters, since in that case capital is perfectly mobile. In this project, we
are only interested in specifications where the stock of capital of each country matters ðf40Þ.

Each country has a representative agent, whose instantaneous utility is ujðcj
t ,‘

j
tÞ, where uj is the utility function and cj

t is
consumption.

The aggregate world resource constraint is

XN

j ¼ 1

ðcj
tþ ijt�dkj

tÞr
XN

j ¼ 1

ðaj
tf

jðkj
t ,‘

j
tÞ�G

j
tÞ ð4Þ

It is a well-known result that the decentralized market equilibrium with complete asset markets is equivalent to the
solution of a corresponding social planner problem, where each country has a weight tj (Negishi weight) in the planner’s
objective, the weights depending on initial endowments.

We therefore formulate the problem as a social planner problem. Since we want to evaluate algorithms used for general
equilibrium problems, solution algorithms are required to use Euler equations together with dynamic and static
constraints to compute the decision rules; in particular, this rules out algorithms that compute the value function of the
social planner.

The problem of the social planner is

max
fcj

t ,ijt ,kj
tþ 1

,‘j
tg

j ¼ 1,...,N
t ¼ 0,..., þ1

E0

XN

j ¼ 1

tj
Xþ1
t ¼ 0

btujðcj
t ,‘

j
tÞ

 !
ð5Þ

subject to (1), (3) and (4), where b is the subjective time discount factor.
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We call lt the Lagrange multiplier of the aggregate resource constraint, which is binding in equilibrium. The first-order
conditions are

tjuj
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j
t ,‘

j
tÞ ¼ lt ð6Þ
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where uj
cðu

j
‘Þ is the derivative of uj with respect to cð‘Þ, and f j

kðf
j
‘ Þ is the derivative of fj with respect to kð‘Þ.

1.2. Specifications of utility and production functions

Four specifications are used for the utility function:
1.
 A constant relative risk aversion (CRRA) function, incorporating only consumption (no labor):

ujðcj
t ,‘

j
tÞ ¼
ðcj

tÞ
1�1=gj

1�
1

gj

ð12Þ

where gj is the intertemporal elasticity of substitution.

2.
 A utility function separable in consumption and labor:

ujðcj
t ,‘

j
tÞ ¼
ðcj

tÞ
1�1=gj

1�
1
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j
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where Zj is the Frisch elasticity of labor supply, and bj governs the relative weight of consumption and leisure.

3.
 A Cobb–Douglas utility function (hence with unit elasticity of substitution between consumption and leisure):

ujðcj
t ,‘

j
tÞ ¼

gj

gj�1
½ðcj

tÞ
cj

ðLe�‘j
tÞ
ð1�cj

Þ
�1�1=gj

ð14Þ

where Le is the labor endowment of the representative agent in each country, and cj governs the relative weight of
consumption and leisure.
4.
 A constant elasticity of substitution (CES) function embedded inside a CRRA function:

ujðcj
t ,‘

j
tÞ ¼

gj

gj�1
ðcj

tÞ
1�1=wj

þbjðLe�‘j
tÞ

1�1=wj
h ið1�1=gjÞ=ð1�1=wjÞ

ð15Þ

where wj is the elasticity of substitution between consumption and leisure.
Three specifications are used for the production function:
1.
 A production function with decreasing returns to scale, using only capital:

f jðkj
t ,‘

j
tÞ ¼ Aðkj

tÞ
a

ð16Þ

where A is a constant and ao1.

2.
 A Cobb–Doublas specification with constant returns to scale:

f jðkj
t ,‘

j
tÞ ¼ Aðkj

tÞ
a
ð‘j

tÞ
1�a

ð17Þ

where a is the share of capital in the production function.

3.
 A constant elasticity of substitution (CES) function:

f jðkj
t ,‘

j
tÞ ¼ A½aðkj

tÞ
mj

þð1�aÞð‘j
tÞ
mj

�1=m
j

ð18Þ

where 1=ð1�mjÞ is the elasticity of substitution between capital and labor.
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1.3. Classification of variables and policy function
The model described above has the following characteristics1,2:
�

end

2N

spa

wo
There are 4N+1 endogenous (control) variables: consumption (cj
t), labor ð‘j

tÞ, capital stock (kj
t + 1), investment (ijt),

Lagrange multiplier ðltÞ.

�
 Consequently, there are 4N+1 model equations given by (6)–(10).

�
 There are N exogenous variables (technology, aj

t), governed by Eq. (11).

�
 Among the endogenous variables, only previous period capital stock kj

t is a predetermined state variable.

�
 The state space is therefore of dimension 2N.3

We denote by zt ¼ ðct ,‘t ,it ,ltÞ the vector of the 3N+1 endogenous variables (excluding capital stocks). The model can
then be written in the following compact form:

EtHðztþ1,zt ,ktþ1,kt ,atþ1,atÞ ¼ 0

The model solution is given by policy functions kt+ 1=F(kt, at) and zt=G(kt, at), which satisfy

EtHðGðFðkt ,atÞ,atþ1Þ,Gðkt ,atÞ,Fðkt ,atÞ,kt ,atþ1,atÞ ¼ 0

2. Specifications, values and deterministic steady state

We tried to select examples that are both representative of useful models and challenging from a numerical point of
view. Finally, thirty different models were selected. Table 1 gives the values of the parameters which are constant across all
specifications. Table 2 lists the various specifications with the functional form of the utility and production functions, and
gives the values of the parameters which vary across specifications.4 Note that, for parameter f (the investment
adjustment cost), we choose a low value, thereby increasing the variance of the endogenous variables: in test 2, which
considers accuracy along a simulated time path, this leads to considering state points further away from the steady state.

The number of countries, N, considered in each model is different so as to check the ability of each algorithm to deal
with both small and larger models.

Some parameters still need to be specified: the Negishi weights tj, and the parameters of the utility and production functions:
A, bj (only for A2, A4, A6, A8), cj (only for A3, A7) and Le (only for A3, A4, A7, A8). These parameters are chosen so that:
�
 At the steady state, all the countries consume exactly their net domestic production. This implies that in the dynamic
model, net foreign assets remain small, which is a rough approximation of reality.

�
 At the steady state, all the countries have the same size. More precisely we assume that steady capital and labor supply

are equal to unity (which implies that production of a country equals A, and therefore cj ¼ A given the previous
assumption).

�
 In all models, the steady state share of capital income in production is equal to a. This will be even true in A4 and A8,

because we impose kj ¼ ‘j ¼ 1.

�
 In models with a time endowment (A3, A4, A7, A8), the steady state ratio of labor supply over the time endowment is

equal to 40%.

These assumptions lead to the following values for the remaining parameters:

A¼
1�b
ab

tj ¼
1

uj
cðcj ,‘j Þ

¼
1

uj
cðA,1Þ

bj ¼ ð1�aÞA1�1=gj

ðfor A2; A6Þ

Le ¼ 2:5 ðfor A3; A4; A7; A8Þ
1 In models A1 and A5, there is no labor. There are therefore only 3N+1 endogenous variables and as many model equations.
2 An alternative categorization of variables would include technology level aj

t in the set of endogenous variables, thus making a total of 5N+1

ogenous variables and as many model equations. The set of exogenous variables would then consist of the N+1 shocks ej
t and et, and there would be

predetermined endogenous state variables (kj
t and aj

t�1). We do not adopt this point of view since it artificially expands the dimension of the state

ce (it becomes of dimension 3N+1).
3 As noted above, this relies on the fact that f40. If there was no adjustment cost, the state space would be of dimension N+1.
4 In this table, for asymmetric specifications A5–A8, the range notation [a,b] for a parameter (say g) means that gj ¼ aþðj�1Þðb�aÞ=N�1. In other

rds, a(b) is the lowest (highest) value of g across countries, and the N values for g are evenly spread over [a,b].



Table 2
Model specifications.

Model N u f g Z m w

A1 2,4,6,8,10 (12) (16) 1

A2 2,4,6,8 (13) (17) 0.25 0.1

A3 2,4,6 (14) (17) 0.25

A4 2,4,6 (15) (18) 0.25 �0.2 0.83

A5 2,4,6,8,10 (12) (16) [0.25,1]

A6 2,4,6,8 (13) (17) [0.25,1] [0.1,1]

A7 2,4,6 (14) (17) [0.25,1]

A8 2,4,6 (15) (18) [0.2,0.4] [�0.3,0.3] [0.75,0.9]

Notes: N is the number of countries; u the equation number for the utility specification; f the equation number for the production function specification;

g, Z, m and w, the value of the parameter when it appears in a given model specification.

Table 1
Values of parameters common to all specifications.

Parameter Value

b 0.99

a 0.36

d 0.025

s 0.01

r 0.95

f 0.5
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bj ¼ ð1�aÞ A1�1=wj

ðLe�‘j Þ
�1=wj

¼ ð1�aÞ A1�1=wj

ðLe�1Þ�1=wj
ðfor A4; A8Þ

cj
¼

1

Le�aðLe�‘j Þ
¼

1

Le�aðLe�1Þ
ðfor A3; A7Þ

Given these restrictions on the parameters, the deterministic steady state for all the model specifications is

‘j ¼ 1 ðexcept A1; A5Þ

kj ¼ 1

aj ¼ 1

ij ¼ d

cj ¼ A

l ¼ 1

3. Accuracy tests

3.1. Approximation errors

We now turn to the definition of approximation errors. For given approximated policy functions ðF̂ ,ĜÞ, we denote by
R
ðF̂ ,ĜÞðkt ,atÞ the vector of unit-free approximation errors at point (kt,at), determined as follows:

Rj
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ðkt ,atÞ ¼

tjuj
cðc

j
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j
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for j=1,y, N, where kt +1 = F(kt, at), ðct ,‘t ,it ,ltÞ ¼ Gðkt ,atÞ and ðctþ1,‘tþ1,itþ1,ltþ1Þ ¼ GðFðkt ,atÞ,atþ1Þ.
By definition, the true policy function (F,G) is such that RðF,GÞðkt ,atÞ ¼ 0 for all points of the state space.
Note that, from a computational point of view, evaluating R

ðF̂ ,ĜÞðkt ,atÞ given F̂ and Ĝ is straightforward, except for the
approximation error of the Euler equation where an expectation term enters in; this requires the use of a numerical
integration method, over the distribution of shocks which enter Eq. (11), as we describe it below.
3.2. Accuracy on a sphere (Test 1)

The first test compares the approximation errors of the participants’ solutions on a hypersphere around the steady state
of the model.

More formally, we denote xt=(kt, at) a point in the state space, x ¼ ðk,aÞ ¼ ð1,1Þ the steady state and Sr the hypersphere of
radius r around the steady state given by Sr ¼ fxt 2 R

2N; Jxt�xJ¼ rg (where JJ is the Euclidian norm).
For the three values r=0.01, 0.1 and 0.3, we draw 1000 points in Sr, and for every approximated policy function ðF̂ ,ĜÞ, we

compute the approximation errors R
ðF̂ ,ĜÞ on these points, and report the maximum errors (for each equation separately,

and for the aggregate across equations). This is the way errors are calculated in Judd (1992).
The purpose of this test is to quantify the loss of accuracy of a solution when going away from the steady state. It is

expected that projection methods will perform better than perturbation methods for large values of the radius r, but this
test will indicate to which extent this is true, and whether this is counterbalanced by a greater accuracy of perturbation
methods at points very close to the steady state.
3.3. Accuracy along a simulated path (Test 2)

The second test compares the approximation errors along a simulated path, starting from the steady state of the model,
and generating random draws of the shocks.

For a given approximated policy function ðF̂ ,ĜÞ, we generate a series of points in the state space x0, y, xT where xt = (kt,
at) and T=10,200. The initial state is the steady state x0 ¼ ðk,aÞ, and the subsequent states are given by kt + 1 = F(xt) and the
law of motion of at (Eq. (11)). The series of shocks (e1

t , y, eN
t , et) for t = 1,y, T are generated with a pseudo-random number

generator.
The first 200 points in the generated series are discarded, so that the 10,000 remaining points can be considered as

representative of the ergodic distribution of the model variables. On these points, we compute the approximation errors
R
ðF̂ ,ĜÞ, and report the mean and maximum errors (for each equation separately, and for the aggregate across equations).

This is the way errors are calculated in Jin and Judd (2002).
3.4. Den Haan–Marcet statistics (Test 3)

It was initially planned to use the Den Haan and Marcet (1994) statistics as a third testing device for participants’
solutions.

The test statistics checks the orthogonality of the error residuals (as specified by R) with some arbitrary function of the
state variables (called instruments), along a simulated path (like those used in accuracy test 2). The instruments used
here are a constant and the first and second order monomials of the state variables. For each approximated policy function,
this exercise is repeated a given number of times, in order to obtain an empirical distribution of the test statistics.
For the true policy function, the test statistics is distributed according to a w2 distribution. The accuracy criterion
for an approximated policy function is therefore the closeness of the empirical distribution of the statistics to the w2

distribution.
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It was finally decided to drop this test in the comparison project for the following two reasons:
�

org
The computational time for the test is extremely large for high values of N (number of countries) and reasonable
simulation lengths (T=10,000) when all the instruments are used. Computations are only feasible with a small number
of countries, smaller simulation lengths or restricted sets of instruments.

�
 More importantly, the test seems unable to usefully discriminate between the participants’ solutions. For the exercises

which were performed, the distribution of the test statistics was very close across all solutions: they were either all very
close to the w2 distribution, or all very far from it, depending on the simulation length and the set of instruments. Since
this property was not extensively tested, it cannot be considered as a more general result, but nevertheless this
apparent lack of discriminative power of the Den Haan–Marcet statistics for this exercise was deemed a sufficient
reason to drop it.
4. Test bench

In order to test the participants’ solutions on an equal basis, we wrote a testing program which performs the accuracy
tests on all the solutions. With that test bench, one can be sure that:
�
 the random elements of the tests are the same across all solutions: for test 1, these random elements are the points on
the sphere around the steady state; for test 2, they are the series of random shocks used to generate the simulated
paths;

�
 when computing the approximation error of the Euler equation, the numerical integration method is the same across all

solutions;

�
 the numerical precision used in the calculations is the same across all solutions.

Here we shortly describe some algorithmic choices made in the test bench, and then give an overview of the
implementation.
4.1. Algorithmic choices

Three numerical integration methods are implemented in the test bench:
�
 the product four-point Gauss–Hermite quadrature, as described in Abramowitz and Stegun (1964, p. 890, eq. 25.4.46);

�
 the degree 5 monomial formula described in Judd (1998, p. 275, eq. 7.5.11);

�
 quasi-Monte Carlo integration, using Niederreiter quasi-random low-discrepancy sequence (see Bratley et al., 1992).

The default choice of the test bench is to use the Gauss–Hermite formula up to dimension 6 (i.e. for Nr5 since there are
N+1 random shocks), and the monomial formula for higher dimensional problems (i.e. for NZ6).

For test 1, the test bench generates uniformly distributed points on a hypersphere of dimension 2N using the simple
algorithm described by Muller (1959). The idea is to draw points from a multivariate standard Gaussian distribution of
dimension 2N, and to divide these points by their Euclidian norm: it is easy to see that the resulting points are uniformly
distributed over the unit hypersphere. Points uniformly distributed over any hypersphere can immediately be generated
by rescaling and translating. The Gaussian draws are generated using draws from the Sobol quasi-random low-discrepancy
sequences (see Antonov and Saleev, 1979) which are transformed in Gaussian vectors by applying the reciprocal of the
Gaussian cumulative distribution function.

For test 2, the random draws for shocks are generated using a Mersenne–Twister random number generator
(see Matsumoto and Nishimura, 1998).

4.2. Implementation choices

The test bench is a standalone program written in the C+ + programming language, and relies on the GNU Scientific
library5 for linear algebra computations and random number generation. The source code of the program is freely available
on the web.6
5 See Galassi et al. (2003) or http://www.gnu.org/software/gsl.
6 The source code that was used for generating the comparison results presented in Kollmann et al. (this issue) is available at: http://www.dynare.

/JedcTestsuiteWiki/TestBenchProblemA.

http://www.gnu.org/software/gsl
http://www.dynare.org/JedcTestsuiteWiki/TestBenchProblemA.
http://www.dynare.org/JedcTestsuiteWiki/TestBenchProblemA.
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The program is made of two main modules, plus one module per solution to be tested. The first module implements the
30 specifications and computes the residuals.7 The second one implements the accuracy tests.8 Then for each of the six
participants’ solutions (PER1, PER2, MRGAL, SMOL, CGA and SSA1, using the notations of Kollmann et al., this issue),
a module implements the corresponding approximated policy function.9 Note that the test bench does not contain the code
to fully recompute each solution: it is only able to simulate the solution, using the coefficients of the parameterized
functional form used for approximating the true solution.

By default the program computes test 1 and 2 for all the specifications (symmetric and asymmetric ones), and uses the
same settings as those used in the comparison paper of Kollmann et al. (this issue). It is, however, possible to change the
tasks to be performed (computing the Den Haan–Marcet statistics, restricting to only some solutions or model
specifications), or to change some parameters of the tests (the number of points, the seed of the random number
generators, the numerical integration method, or the normalization of the residual for the aggregate resource constraint
equation).
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